РУС/ENG
Кафедра математики
физического факультета МГУ

Линейный и нелинейный функциональный анализ

Функциональный анализ и элементы математической физики 

Читается c 7-ого по 9-ый семестр.
7,8-й семестры по 4 часа лекций в неделю, 9-й семестр по 2 часа лекций в неделю

Лекторы
Отчётность
экзамен
Содержание курса

Курс функционального анализа читается в течение 3-х семестров (7—9) и содержит как традиционный материал по основам функционального и вещественного анализа, так и приложения в области линейных и нелинейных задач математической физики. Часть лекций (с номерами, помеченными литерами) посвящены рассмотрению примеров, а также развитию и углублению теоретического материала. В качестве домашнего задания студентам даются задачи средней сложности, непосредственно связанные с материалами каждого семинара. Решения задач студенты защищают перед лектором в устной форме. В 7—8 семестрах изучается теория меры и интеграл Лебега; свойства метрических, топологических, нормированных (в основном банаховых), гильбертовых и векторных топологических пространств. Достаточно подробно изучаются свойства линейных операторов в банаховых и гильбертовых пространствах (в т. ч. элементы спектральной теории), излагаются элементы теории двойственности банаховых и векторных топологических пространств. Изучаются пространства Лебега, Соболева, функций ограниченной вариации и их приложения к задачам математической физики. В 9 семестре продолжается изучение геометрических и топологических свойств банаховых пространств, а также излагаются идеи и методы нелинейного функционального анализа. Прежде всего, исследуются такие свойства нелинейных отображений, как дифференцируемость по Гато и по Фреше, непрерывность, компактность, вполне непрерывность и полная непрерывность. Вводится важное понятие оператора Немыцкого и теорема М. А. Красносельского. Затем рассматриваются различные вариационные методы, такие, как метод Люстерника—Шнирельмана в сочетании с принципом компактности Пале-Смейла, затем метод глобального расслоения С. И. Похожаева, метод рода множества М. А. Красносельского в сочетании с методом, основанном на теореме о горном перевале. После рассматриваются такие методы, как метод компактности, монотонности и теорем о неподвижной точке. В конце курса рассматриваются основные методы доказательства разрушения решений начальных и начально-краевых задач для уравнений в частных производных.

Литература:

Основная.

    1. Арсеньев А. А. Лекции по функциональному анализу для начинающих специалистов по математической физике. Ижевск: РХД, 2011.
    2. Струве М. Вариационные методы. Приложения к нелинейным уравнениям в частных производных и гамильтоновым системам. М.: УРСС, 2011.

Дополнительная.

    1. Данфорд Н., Шварц Дж. Т. Линейные операторы. Общая теория. Т.1-3. М.:Издательство иностранной литературы. 1962-1974.
    2. Рид М., Саймон Б. Методы современной математической физики. Т.1-4. М., Мир, 1977-1982.
    3. В.И.Богачёв. Основы теории меры. Тома 1-2. Научно-издательский центр «Регулярная и хаотическая динамика». Москва-Ижевск, 2003г.
    4. С.С.Кутателадзе. Основы функционального анализа. Издательство «Наука», Сибирское отделение. 1983г.
    5. П.Халмош. Гильбертово пространство в задачах. ИО НФМИ. 2000г.
    6. К.Иосида. Функциональный анализ. Издательство «Мир», 1967г.
    7. А.Я. Хелемский. Лекции по функциональному анализу. МЦНМОБ 2004г.
    8. В.М. Федоров. Курс функционального анализа. «Лань». 2005г.
    9. Шилов Г.Е., Гуревич Б.Л. Интеграл мера, производная. М.: Наука, 1964.
    10. Александров П.С. Введение в теорию множеств и общую топологию. М.: , Наука, 1977.
    11. Канторович Л.В, Акилов Г.П. Функциональный анализ. М.: Наука, 1977.
    12. Люстерник Л.А., Соболев В.И. Краткий курс функционального анализа. М.: Наука, 1982.
    13. Владимиров В.С. Обобщённые функции в математической физике. М.: Наука, 1976
    14. П.Н.Князев. Фукциональный анализ. УРРС, 2003г
    15. Ж.Дьедоне. Основы современного анализа. Москва. Мир. 1964г.
    16. А.А.Кирилов. Теоремы и задачи функционального анализа. Москва. «Наука». 1988г
    17. В.А.Треногин, Б.М.Писаревский, Т.С.Соболева. Задачи и упражнения по функциональному анализу. Москва. «Наука».1984г.
    18. В.А.Треногин. Функциональный анализ. Москва. «Наука». 1993г.
    19. У.Рудин. Функциональный анализ. Издательство «Лань», 2005г.
Дополнительная литература

СПИСОК ВОПРОСОВ К ЭКЗАМЕНУ ПО ФАН-2

Вопросы


Все теоремы с доказательством, если не указано (без д-ва.)

 

7 семестр:

Лекции Корпусова М.О., Панина А.А. в виде презентаций:

Лекции Корпусова М.О., Панина А.А. в виде полных текстов:

Первая часть первого тома курса лекций \"Линейный и нелинейный функциональный анализ\"




Семинары Панина А.А.:

Вторая часть первого тома курса лекций \"Линейный и нелинейный функциональный анализ\"


 

8 семестр:

Второй том курса лекций "Линейный и нелинейный функциональный анализ"

Лекции М. О. Корпусова и А. А. Панина

 

Семинары Панина А.А.:

Вопросы к экзамену:

9 семестр:

Лекции М. О. Корпусова

Третий том курса лекций "Линейный и нелинейный функциональный анализ"