
1

2

3

4

5

6

197 7 A C M T u r i n g A w a r d L e c t u r e

The 1977 ACM Turing Award was presented to John Backus
at the ACM Annual Conference in Seattle, October 17. In intro-
ducing the recipient, Jean E. Sammet, Chairman of the Awards
Committee, made the following comments and read a portion of
the final citation. The full announcement is in the September
1977 issue of Communications, page 681.

"Probably there is nobody in the room who has not heard of
For t ran and most of you have probably used it at least once, or at
least looked over the shoulder of someone who was writing a For.
t ran program. There are probably almost as many people who
have heard the letters BNF but don' t necessarily know what they
stand for. Well, the B is for Backus, and the other letters are
explained in the formal citation. These two contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer field and both were made by John
Backus (which in the For t ran case also involved some col-
leagues). It is for these contributions that he is receiving this
year's Turing award.

The short form of his citation is for 'profound, influential,
and lasting contributions to the design of practical high-level
programming systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.'

The most significant part of the full citation is as follows:
' . . . Backus headed a small IBM group in New York City

during the early 1950s. The earliest product of this group's
efforts was a high-level language for scientific and technical corn-

putations called Fortran. This same group designed the first
system to translate For t ran programs into machine language.
They employed novel optimizing techniques to generate fast
machine-language programs. Many other compilers for the lan-
guage were developed, first on IBM machines, and later on virtu-
ally every make of computer. For t ran was adopted as a U.S.
national standard in 1966.

During the latter part of the 1950s, Backus served on the
international committees which developed Algol 58 and a later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as a means for de-
veloping programs and as a formal means of publishing the
algorithms on which the programs are based.

In 1959, Backus presented a paper at the UNESCO confer-
ence in Paris on the syntax and semantics of a proposed inter-
national algebraic language. In this paper, he was the first to
employ a formal technique for specifying the syntax of program-
ming languages. The formal notation became known as B N F -
standing for "Backus Normal Form," or "Backus Naur Form" to
recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of problem-solving on computers and to the theoretical
world existing at the interface between artificial languages and
computational linguistics. For t ran remains one of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal syntactic definition.' "

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs
John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author's address: 91 Saint Germain Ave., San Francisco, CA
94114.
© 1978 ACM 0001-0782/78/0800-0613 $00.75

613

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor- - the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

Communications August 1978
of Volume 2 i
the ACM Number 8

7

function s = SS(x) % Sum Standard

n = length(x);

i = 1;

s = 0;

while i <= n

 s = s + x(i);

 i = i + 1;

end

end

8

function s = S(x) % Sum

if H(x)==1

 s = x;

else

 s = S(T(x)) + S(B(x));

end

end

function y = T(x) % Top

y = x(1:floor(H(x)/2));

end

function y = B(x) % Bottom

n = H(x);

y = x(floor(n/2)+1:n);

end

function n = H(x) % Height

n = length(x);

end

9

function s = PS(x,y) % Inner Product

 % Standard

n = length(x);

i = 1;

s = 0;

while i <= n

 s = s + x(i)*y(i);

 i = i + 1;

end

end

10

function p = P(x,y) % Inner Product

if H(x)==1

 p = x*y;

else

 p = P(T(x),T(y)) + P(B(x),B(y));

end

end

function y = T(x) % Top

y = x(1:floor(H(x)/2));

end

function y = B(x) % Bottom

n = H(x);

y = x(floor(n/2)+1:n);

end

function n = H(x) % Height

n = length(x);

end

11

function y = Mv(A,x) % Matrix x Vector

if H(A)==1

 y = P(A',x);

else

 y = [Mv(T(A),x); Mv(B(A),x)];

end

end

function p = P(x,y) % Inner Product

if H(x)==1

 p = x*y;

else

 p = P(T(x),T(y)) + P(B(x),B(y));

end

end

function y = T(x) % Top

y = x(1:floor(H(x)/2), :);

end

function y = B(x) % Bottom

n = H(x);

y = x(floor(n/2)+1:n, :);

end

function n = H(x) % Height

n = size(x,1);

end

12

function C = MM(A,B) % Matrix x Matrix

if W(B)==1

 C = Mv(A,B);

else

 C = [MM(A,L(B)), MM(A,R(B))];

end

end

function y = Mv(A,x) % Matrix x Vector

if H(A)==1

 y = P(A',x);

else

 y = [Mv(T(A),x); Mv(B(A),x)];

end

end

function p = P(x,y) % Inner Product

if H(x)==1

 p = x*y;

else

 p = P(T(x),T(y)) + P(B(x),B(y));

end

end

function y = T(x) % Top

y = x(1:floor(H(x)/2), :);

end

13

function y = B(x) % Bottom

n = H(x);

y = x(floor(n/2)+1:n, :);

end

function y = L(x) % Left

y = x(:, 1:floor(W(x)/2));

end

function y = R(x) % Right

n = W(x);

y = x(:, floor(n/2)+1:n);

end

function n = H(x) % Height

n = size(x,1);

end

function n = W(x) % Width

n = size(x,2);

end

14

function C = MMS(A,B) % Matrix x Matrix

 % Standard

[n,m] = size(A);

[m,k] = size(B);

i = 1;

while i <= n

 j = 1;

 while j <= k

 s = 0;

 p = 1;

 while p <= m

 s = s + A(i,p)*B(p,j);

 p = p + 1;

 end

 C(i,j) = s;

 j = j + 1;

 end

 i = i + 1;

end

end

15

16

17

18

19

