Устойчивые и дрейфующие пятна контрастных структур в двумерной неоднородной среде с адвекцией

А.А.Быков

2 июня 2022

Аннотация

Представлены результаты исследования контрастных структур (КС), возникающих при моделировании двумерных задач реакции–адвекции–диффузии в неоднородной среде со степенной функцией плотности источников в окрестности корней. Рассматривается конфигурация, для которой фронт КС формируется в результате совместного действия дрейфа дисбаланса и адвекции (направленного переноса за счет перемещения несущей среды). Рассмотрены КС, возникающие в результате переноса граничных условий вдоль траекторий дрейфа адвекции-диффузии. Построена формальная асимптотика решения. Дано обоснование с использованием метода дифференциальных неравенств. Приводятся численные результаты.

Keywords: нелинейные дифференциальные уравнения, асимптотические методы, контрастная структура, дифференциальные неравенства. Профессор Быков А.А.

1. Введение. Мы изучаем контрастные структуры (КС), возникающие при моделировании процессов РД в двумерной неоднородной среде. Решение уравнения РД (далее для определенности используем термин «концентрация») определяется балансом процессов диффузии, генерации и адвекции. Процесс генерации описывается плотностью источников, которая зависит от концентрации и от координат (x, y) на плоскости. Известно, что в средах с вырожденными корнями (производная в точке корня обращается в нуль) функции плотности источников возможно образование КС, в которых ВПС или пограничный слой (ПС) имеет многозонную структуру [1]. Это означает, что имеется два или более участков ВПС, внутри которых зависимость концентрации от поперечной координаты описывается функциями с различной скоростью стремления к уровню насышения. Цель данной работы состоит в том, чтобы показать, что многозонная структура пространственного ВПС может образовываться также в двумерной среде, в которой функция плотности источников (ФПИ) представляется в виде степенной функции. При этом существенную роль имеет адвекция. Наша цель в том, чтобы показать, что в отличие от случая простого корня, для кратных корней ВПС проявляет разное поведение в передней и задней частях фронта.

2. Модель ФПИ.

В соответствии с методикой А.Н.Тихонова, мы рассматриваем двумерную по пространственным координатам сингулярно возмущенную краевую задачу с малым параметром для уравнения РД в области П: [utxx]:

$$\varepsilon u'_t + \varepsilon V_x u'_x + \varepsilon V_y u'_y = \varepsilon^2 (\kappa u'_x)'_x + \varepsilon^2 (\kappa u'_y)'_y - f(u, x, y), \tag{1}$$

 $(x,y) \in \Pi, t > t_0 = 0$, с граничными условия второго рода: $\frac{\partial u}{\partial \vec{n}} = \psi_1(x,y)$ на Γ (Γ - это граница Π) и с начальным условием $u(x,y,t_0) = \psi_0(x,y)$. Определим точки равновесия $\varphi_j(x,y)$ как значения u(x,y), для которых $f(\varphi_j(x,y),x,y) = 0$. Предположим, что выполнены следующие условия, накладываемые на функцию f:

У1 В каждой точке области *D* имеется ровно три точки равновесия $\varphi_{1;2;3}(x, y)$. Предполагаем, что $\varphi_{1;2;3}(x, y)$ есть гладкие функции в П, причем $\varphi_1(x, y) < \varphi_2(x, y) < \varphi_3(x, y)$ в П.

У2 В окрестности корня ФПИ представляется в виде

$$f(u, x, y) = F_j(u - \varphi_j(x, y), x, y)$$
(2)

при $u \in \Omega(\varphi_j(x,y)), j \in \{1;2;3\}$, причем $F_{1;2;3}(\omega,x,y)|_{\omega=0} = 0$ и $\frac{dF_{1;3}(\omega,x,y)}{d\omega}\Big|_{\omega=0} = 0.$

Здесь Ω(...) есть окрестность указанного объекта. УЗ Пусть [j]:

$$J(x,y) = \int_{\varphi_1(x,y)}^{\varphi_3(x,y)} f(u,x,y) du.$$
(3)

Мы рассмотрим ФПИ такую, что внутри П
 есть замкнута гладкая кривая Υ_0 , ограничивающая связную односвяз
ную область Gс границей $\Upsilon_0=\partial G$ такая, что
 $J(x,y)|_{\Upsilon_0}=0,$

Вающая связную односьмому то так J(x,y) > 0 внутри G и J(x,y) < 0 вне G, $\frac{\partial J(x,y)}{\partial \vec{n}}\Big|_{\Upsilon_0} > 0$, \vec{n} есть внешняя нормаль.

Известно, что ВПС, расположенный вдоль Υ_0 , имеет нулевую скорость дрейфа дисбаланса, но вообще говоря, ненулевую скорость дрейфа кривизны.

3. Начальные условия.

Сформируем начальную концентрацию в виде пятна, покрывающего некоторую связную область G_0 , так что $u(x, y, t_0) \approx \varphi_1$ вне G_0 (но вне $\Omega(\Upsilon)$), $u(x, y, t_0) \approx \varphi_3$ внутри G (но вне $\Omega(\Upsilon)$), и внутри $\Omega(\Upsilon)$ расположен ВПС. Тогда за счет градиентного дрейфа и дрейфа кривизны сформируется пятно КС, граница которого будет расположена в окрестности Υ_0 . В данной работе мы изучаем влияние адвекции, определяемой скоростью заданного направленного внешнего переноса $\vec{V} = (V_x, V_y)$. Назовем пятном КС область G(t), в которой

$$\varphi_1(x,y) < u(x,y,t) < \varphi_2(x,y).$$

Рассмотрим КС, которая состоит из ровно одного пятна G(t), границу которого обозначим

$$\Upsilon(t) = \{(x, y) : u(x, y, t) = \varphi_2(x, y)\}$$

При сформулированных условиях найдется промежуток времени $T = [t_1, t_2]$ в котором для любого $t \in T$ кривая $\Upsilon(t)$ будет гладкой замкнутой кривой без особых точек. Значение t_1 соответствует моменту завершения переходных процессов формирования КС из начальных условий, значение t_2 соответствует моменту разрушения пятна КС или выхода пятна на границу области П. Мы не рассматриваем в этой работе формирование КС. Пусть решение типа КС уже сформировано из некоторых начальных условий, причем пятно КС имеет вид ограниченной связной односвязной области G(t).

4. Равновесное положение ВПС.

В этом разделе мы выведем необходимые условия существования стационарной КС в неоднородной среде в нулевом приближении по степеням параметра ε . Иначе говоря, мы представим линию ВПС в виде главного члена разложения

$$\Upsilon(t) = \Upsilon_0(t) + \varepsilon \Upsilon_1(t) + \dots$$

Это равенство можно рассматривать как параметрическое представление ВПС, причем функции $(x, y) = (\phi(s, t), \psi(s, t))$, представляющие координаты, есть ряды того же вида по степеням параметра ε . Здесь s – параметр, определяющий точку на кривой, функции $\phi(s, t), \psi(s, t)$ периодические по координате s. Сначала мы рассмотрим произвольную гладкую линию фронта ВПС, а затем используем условие стационарности этой линии в главном (нулевом) приближении и получим уравнение для определения равновесного положения ВПС.

Пусть замкнутая гладкая кривая $\Upsilon(t)$ есть линия фронта ВПС, т.е. решение уравнения $u(x, y, t) = \varphi_2(x, y)$, для которого $\frac{\partial u}{\partial \vec{n}} > 0$, где \vec{n} есть внешняя нормаль к Υ . Одновременно $\Upsilon(t)$ есть граница G(t). Для определенности берем пятно КС положительной полярности, т.е. $u(x, y, t) > \varphi_2(x, y)$ внутри G. Пусть t_0 есть некоторый момент времени, для которого ВПС уже сформирован, и $\Upsilon_0 = \Upsilon(t_0)$. Рассмотрим уравнение $(??)_{[xxx]}$ в $\Omega(\Upsilon_0)$, т.е. в некоторой окрестности Υ_0 . На Υ_0 введем координату *s*, равную длине дуги, отсчитываемую от некоторой точки $M_0 \in \Upsilon_0$ против часовой стрелки. Так как Υ замкнутая линия, то s есть периодическая координата, s и s + T(t) соответствуют одной и той же точке. В каждой точке Υ построим внешнюю нормаль \vec{n} . На нормали введем координату z так, чтобы на Υ_0 было $z = z_0$. Рассмотрим окрестность $\Omega(\Upsilon_0)$ такую, чтобы в ней отображение $(x,y) \Leftrightarrow (z,s)$ было взаимно однозначным (с учетом периодичности по s). Такая окрестность заведомо существует, так как якобиан D(x,y)/D(z,s): (1) равен 1 на Υ_0 и (2) есть непрерывная функция от (x,y). Можно без ограничения общности взять в некоторой окрестности точки $M(x,y) \in \Upsilon$ локальные ортогональные координаты (z, s). Ось z направлена вдоль градиента $(u'_x, u'_y)^T$ функции $u(x, y, t_0)$ наружу по отношению к $G(t_0)$, ось s направлена вдоль Υ_0 . Пусть функция J(z,s) (определена условием **У3**) для любого s есть монотонная вдоль переменной zфункция в некоторой окрестности точки (z_0, s_0) . Уравнение $(1)_{[utxx]}$ запишем в виде [eq3]:

$$\varepsilon u'_t + \varepsilon \left(A_1 V_z u'_z + A_2 V_s u'_s \right) = \\ = \kappa \varepsilon^2 \left(A_{11} u''_{zz} + 2A_{12} u''_{zs} + A_{22} u''_{ss} + B_1 u'_z + B_2 u'_s \right) - f(u, z, s), \quad (4)$$

 $(z,s) \in \Omega(\Upsilon)$. Здесь [ав]:

$$A_{11} = (z'_x)^2 + (z'_y)^2, \quad A_{12} = z'_x s'_x + z'_y s'_y, \quad A_{22} = (s'_x)^2 + (s'_y)^2, \tag{5}$$

$$B_1 = z''_{xx} + z''_{yy}, \quad B_2 = s''_{xx} + s''_{yy}, \tag{6}$$

 $V_s = V \sin \alpha$, $V_z = V \cos \alpha$, где α есть угол между осями Ox и Oz в точке (z_0, s_0) . Для построения частичной суммы асимптотического ряда решения уравнения (4)[еqs] в неоднородной среде мы используем решение этого уравнения в однородной среде. Пусть (\tilde{z}, \tilde{s}) есть некоторая точка на Υ . Выполним замену $z = \tilde{z} + \varepsilon \xi$, $s = \tilde{s} + \varepsilon \eta$, $t = \varepsilon \tau$, получим уравнение [еq4b]:

$$u'_{\tau} + D_1 V_z u'_{\xi} + D_2 V_s u'_{\eta} = \\ = \kappa \left(A_{11} u''_{\xi\xi} + 2A_{12} u''_{\xi\eta} + A_{22} u''_{\eta\eta} \right) + \varepsilon \kappa \left(B_1 u'_{\xi} + B_2 u'_{\eta} \right) - f(u, z, s), \quad (7)$$

$$(z,s) = (\tilde{z} + \varepsilon\xi, \tilde{s} + \varepsilon\eta), \tag{8}$$

Пусть кривая $\tilde{\Upsilon}$ такова, что в каждой точке $(\xi, \eta) \in \tilde{\Upsilon}$ верно равенство $u(\xi, \eta) = \varphi_2(z, s)$, \vec{n} есть нормаль к $\tilde{\Upsilon}$, $\vec{n} \parallel \bigtriangledown u \parallel \xi$:

$$u'_{\tau} + V_z D_1 u'_{\xi} = \kappa A_{11} u''_{\xi\xi} - f(u, z, s).$$
(9)

Так как нас интересует асимптотика решения при малых ε , мы рассмотрим ситуацию, при которой радиус кривизны линии Υ много больше толщины ВПС. Выделим медленную переменную η и быструю переменную ξ , $|u'_{\eta}| \ll |u'_{\xi}|$, $|u''_{\eta\eta}| \ll |u''_{\xi\xi}|$, На Υ получим

Вместе с задачей (7)_[еq4b] рассмотрим "сопутствующую" задачу в точке $M_0 = (\tilde{z}, \tilde{s}) \in \Omega(\tilde{\Upsilon})$. В точке M_0 по ее определению будет верны равенства $u'_{\eta} = 0$, $u''_{\eta\eta} = 0$. Из (5)_[Ав] следует, что $A_{12} = 0$ тождественно. Поэтому запишем сопутствующую задачу нулевого приближения в виде

$$u_{\tau}' + V_z(\tilde{z}, \tilde{s}) D_1 u_{\xi}' = \kappa A_{11} u_{\xi\xi}'' - f\left(u, \tilde{z}, \tilde{s}\right).$$

$$\tag{10}$$

Таким образом, сопутствующая задача соответствует однородной среде, параметры которой вычисляются в точке с "замороженными" координатами $z = \tilde{z}, s = \tilde{s}$. Заметим, что ФПИ в сопутствующей задаче не зависит явно от ξ . Поэтому, вместо $f(u, x^*, y^*)$ будем писать просто f(u). Решение уравнения $(10)_{[eq5b]}$ будем искать в виде бегущей квазиволны: $u(z, s, t) = v(\chi)$, где $\chi = \xi - W\tau$: [eq6]:

$$-(W - V_z D_1)v'_{\chi} = \kappa A_{11}v''_{\chi\chi} - f(v)$$
(11)

с условиями примыкания к равновесному уровню на бесконечности: $v(-\infty) = \varphi_3 - 0$, $v(+\infty) = \varphi_1 + 0$, в этом параграфе $\varphi_{1;3} = \varphi_{1;3}(\tilde{z}, \tilde{s})$. Операция понижения порядка $v'_{\chi} = p(v), v''_{\chi\chi} = pp'_v$, приводит к уравнению [ppva]:

$$-\hat{U}p = \kappa A_{11}pp'_v - f(v), \tag{12}$$

где **[wl**]:

$$\hat{U} = W - D_1 \tilde{V}_z \tag{13}$$

с условиями для p(v), обеспечивающими решение типа КС с одним ВПС, соединяющим уровни φ_1 и φ_3 : [p13a]:

$$p(\varphi_1 + 0) = +0, \ p(\varphi_3 - 0) = +0.$$
 (14)

К тому же p(v) > 0 при $\varphi_1 < v < \varphi_3$. Из условия существования решения этой переопределенной задачи с двумя условиями для уравнения первого порядка значение \hat{U} однозначно находится [14]. Поэтому существует функция $\hat{U}(\tilde{z}, \tilde{s})$ такая, что при подстановке $\hat{U}(\tilde{z}, \tilde{s})$ в $(12)_{|\mathbf{p}\mathbf{p}\mathbf{v}\mathbf{s}|}$ существует единственная гладкая функция p(v), для которой верно $(12)_{|\mathbf{p}\mathbf{p}\mathbf{v}\mathbf{s}|}$ и верны также условия $(14)_{|\mathbf{p}\mathbf{13s}|}$. Так как в любой точке Υ верно $z = z_0$, то \hat{U} будет функцией только от $s_0 : \hat{U} = \hat{U}(s_0)$. Пусть теперь (z_0, s_0) есть заданная точка на Υ . Рассмотрим семейство сопутствующих задач $(\ref{s})_{|\mathbf{e}\mathbf{q}\mathbf{5}|}$ с параметром \tilde{z} , для которых параметр \tilde{s} зафиксирован: $\tilde{s} = s_0$. Из $(13)_{|\mathbf{w}\mathbf{L}|}$ теперь следует, что в некоторой окрестности значения $\tilde{s} \in [s^* - d, s^* + d]$ существует функция $\tilde{W}(\tilde{z}, \tilde{s})$ такая, что верно равенство

$$\tilde{W}(\tilde{z},\tilde{s}) - D_1 \tilde{V}_z(\tilde{s}) = \hat{U}(\tilde{z},\tilde{s}).$$
(15)

Поэтому в той же окрестности определена функция [woo]:

$$W(\tilde{z},\tilde{s}) = D_1 \tilde{V}_z(\tilde{s}) + \hat{U}(\tilde{z},\tilde{s}), \tag{16}$$

равная скорости перемещения ВПС, измеряемой в направлении, перпендикулярном нормали к линии ВПС. Мы нашли эту скорость в нулевом приближении по степеням ε , последующие слагаемые степенного ряда $W(\tilde{z}, \tilde{s}) = W_0 + \varepsilon W_1 + \varepsilon^2 W_2 + ...$ в этой работе находить на будем. Найдем стационарное положение ВПС, которое определяется нулевой скоростью дрейфа ВПС: $W(\tilde{z}, \tilde{s}) = 0$.

Из
 ${\bf Y5}$ следует, что уравнение

$$D_1 \tilde{V}_z + \hat{U}(z,s) = 0 \tag{17}$$

$$d\vec{l} = (dx, dy), \, \vec{n} = (dy, -dx),$$

$$\left(\vec{V}(z,s),\vec{n}\right) + \hat{U}(z,s) = 0,$$
 (18)

$$V(z,s)\cos\alpha + \hat{U}(z,s) = 0, \qquad (19)$$

Два решения:

$$\begin{cases}
(n_x)_1 = \frac{-V_y \sqrt{V_x^2 + V_y^2 - W^2} + V_x W}{V_x^2 + V_y^2}, \\
(n_y)_1 = \frac{V_x \sqrt{V_x^2 + V_y^2 - W^2} + V_y W}{V_x^2 + V_y^2}, \\
(20)
\end{cases}$$

$$(n_x)_2 = \frac{V_y \sqrt{V_x^2 + V_y^2 - W^2 + V_x W}}{V_x^2 + V_y^2},$$

$$(21)$$

$$(n_y)_2 = \frac{-V_x + V_y + V_y + V_y + V_y + V_y}{V_x^2 + V_y^2},$$
55

В декартовой системе координат кривая Υ может быть представлена в параметрической форме как решение задачи Коши для системы ОДУ [оdel]:

$$\begin{cases} \frac{dx}{ds} = \frac{V_x \sqrt{V_x^2 + V_y^2 - W^2} + V_y W}{V_x^2 + V_y^2}, \\ \frac{dy}{ds} = \frac{V_y \sqrt{V_x^2 + V_y^2 - W^2} - V_x W}{V_x^2 + V_y^2}, \end{cases}$$
(22)

где W = W(x, y), $V_{x;y} = V_{x;y}(x, y)$, с начальными условиями в некоторой точке M_0 , координаты которой удовлетворяют (17)_[Еqui]. Эта система имеет единственное решение $z = \tilde{r}(s)$.

На кривой Υ есть две особенные точки, в которых касательная к Υ параллельна векторному полю \vec{V} . Точка нулевой скорости дрейфа дисбаланса $\hat{U}(\tilde{z}, \tilde{s}) = 0$ определяется уравнением J(x, y) = 0, где J задано равенством (3)_[J]. Все эти точки лежат на кривой Υ_0 . Из (17)_[Еqui] следует, что точка на Υ_0 лежит также на кривой $\tilde{\Upsilon}$ в том и только том случае, когда $V_z = 0$.

Теорема 1. Пусть $\vec{V}(z,s)$ есть гладкое векторное поле в $\Omega(\Upsilon)$, простое относительно любой линии $W = \text{const.} \ \hat{U}(z,s) = 0$ на $\Upsilon, \ \hat{U}(z,s)$ есть возрастающая по переменной z. Пусть в $\Omega(\Upsilon)$ верно

$$V(z,s) < \hat{U}(z,s), \tag{23}$$

Тогда существует единственная кривая $\tilde{\Upsilon}$, в каждой точке которой выполнено условие $(18)_{[hLa]}$. Кривая $\tilde{\Upsilon}$ пересекает Υ_0 ровно в двух точках, причем в каждой из этих точек одновременно $\hat{U}(z,s) = 0$ и $\tilde{\vec{n}} \perp \vec{V}$. На $\tilde{\Upsilon}$ имеются ровно две точки, в которых $V_x^2 + V_y^2 = W^2$, в каждой из этих точек $\tilde{\vec{n}} \parallel \vec{V}$. В одной из них (главная точка фронта квазиволны) W < 0, в другой (главная точка тыла квазиволны) W > 0. Здесь $\tilde{\vec{n}}$ есть нормаль к $\tilde{\Upsilon}$.

Замкнутая гладкая кривая $z = \xi(s)$ есть граница пятна КС в приближении первого порядка по переменной ε . Если $p(\omega)$ есть функция, удовлетворяющая всем сформулированным ранее условиям при некотором значении W, то $p(\omega)$ дает решение задачи Коши

$$\frac{dp}{dv} = -\frac{W}{\kappa} + \frac{f(v)}{\kappa p},\tag{24}$$

 $v \in (\varphi_1, \varphi_3), \, p(\varphi_1) = 0$, причем условие $p(\varphi_3) = 0$ будет выполнено автоматически.

5. Равновесный переходный слой в среде с нулевой адвекцией Теперь покажем типичные конфигурации, возникающие в среде с нулевой адвекцией и со смешанными граничными условиями (первого рода на нижней и верхней по чертежу, второго рода на остальных границах). Интенсивность закраски показывает величину градиента решения (черные области – пятна КС с малым градиентом.) Таким образом, переходный слой показан белым цветом.

Рисунок 1. Равновесный слой в однородной среде с нулевой адвекцией. Область есть прямоугольник с двумя выступами с левой и правой боковых сторон.

Рисунок 2. Равновесный слой в однородной среде с нулевой адвекцией. Область есть прямоугольник с двумя выступами с левой и правой боковых сторон, смещенными один относительно второго.

Рисунок 3. Равновесный слой в однородной среде с нулевой адвекцией с границами сложной формы. Показан эффект трансверсальности, вытекающий из условий равновестия слоя с нулевой адвекцией.

6. Равновесный переходный слой в среде с ненулевой адвекцией Рисунок 4. Равновесный слой в среде с адвекцией, скорость адвекции направлена вертикально вниз.

Рисунок 5. Равновесный слой в среде с адвекцией, скорость адвекции направлена вертикально вниз.

Рисунок 6. Равновесный слой в среде с адвекцией. Скорость адвекции направлена вертикально вверх. Отрыв слоя от угловой точки.

Рисунок 7. Неравновесный слой в среде с сильной адвекцией. Скорость адвекции направлена вертикально вниз. Отрыв слоя от угловой точки. Выход на граничный режим.

Рисунок 8. Неравновесный слой в среде с сильной адвекцией. Выход на граничный режим.

Рисунок 9. Равновесный слой в однородной среде с адвекцией с границами сложной формы. Трансверсальность.

Рисунок 10. Равновесный слой в однородной среде с адвекцией с границами сложной формы. Трансверсальность.

Рисунок 11. Равновесный слой в однородной среде с косой адвекцией.

Г			

Рисунок 12. Равновесный слой в однородной среде с сильной косой адвекцией.

Г					
			1	L.	
┝	-				_
ſ					
F	-				
		100.00			
F					
┝					

Рисунок 13. Неравновесный слой с очень сильной косой адвекцией, выход на границу.

і исупок 14. Перарпореспри слои, рыход па границу	Рисунок 1	14. Her	равновесный	слой.	выход	на	границу
---	-----------	---------	-------------	-------	-------	----	---------

1		

Рисунок 15. Равновесный слой в однородной среде, дрейф дисбаланса, нулевая адвекция.

Рисунок 16. Равновесный слой в неоднородной среде, градиентный дрейф.

ſ				
I				
I				
ŀ				
I				
I				
I				
I				
I				
İ				
I				
I				
I				
I				
I				
ł	_			-
I				
I				
I				
I				
I				
ſ				
I				
L		•		•

Литература

Список литературы

- 1. Тихонов А.Н. О зависимости решений дифференциальных уравнений от малого параметра // Матем. сб., 22(64):2 (1948), 193–204
- 2. Тихонов А.Н., Васильева А.Б., Свешников А.Г. ТФКП.

- 3. Васильева А.Б., Бутузов В.Ф., Нефедов Н.Н. Контрастные структуры в сингулярно возмущенных задачах. // Фундаментальная и прикладная математика, 1998. Т.4. № 3. С.799-851.
- 4. V.F.Butuzov, A.B.Vasilieva, Singularly Perturbed Problems with Boundary and Interior Layers: Theory and Application. New York: John Wiley & Sons, 2007.
- 5. Бутузов В. Ф. О периодических решениях сингулярно возмущенных параболических задач в случае кратных корней вырожденного уравнения. // ЖВМиМФ, 2011, vol 51, issue 1, pages 44–55.
- 6. Butuzov V. F. On the dependence of the structure of boundary layers on the boundary conditions in a singularly perturbed boundary value problem with multiple root of the related degenerate equation // Mathematical Notes. 2016. Vol. 99, no. 2. P. 36-47.
- 7. Бутузов В. Ф. Об одной сингулярно возмущённой задаче с кратным корнем вырожденного уравнения // Вестник кибернетики. 2017. Т. 1, N 25. С. 18–34.
- 8. В. Ф. Бутузов, Н. Н. Нефедов, Л. Реке, К. Р. Шнайдер Асимптотика, устойчивость и область притяжения периодического решения сингулярно возмущенной параболической задачи с двукратным корнем вырожденного уравнения // Моделирование и анализ информационных систем. 2016. Т. 23, N 3. C. 247–257.
- 9. Бутузов В. Ф., Бычков А. И. Начально-краевая задача для сингулярно возмущенного параболического уравнения в случаях двукратного и трёхкратного корня вырожденного уравнения // Чебышевский сборник. 2015. Т. 16, N 4.
- 10. C.V.Pao, Nonlinear parabolic and elliptic equations. New York: Plenum, 1992.
- 11. Бутузов В. Ф. Об устойчивости и области притяжения стационарного решения сингулярно возмущенной параболической задачи с кратным корнем вырожденного уравнения // Дифференциальные уравнения. 2015. Т. 51, N 12. С. 1593–1605.
- 12. Butuzov V. F. On the stability and the attraction domain of the stationary solution of a singularly perturbed parabolic equation with a multiple root of the degenerate equation // Differential Equations. 2015. Vol. 51, no. 12. P. 1593–1605.
- 13. Бутузов В. Ф., Белошапко В. А. Сингулярно возмущенная эллиптическая задача Дирихле с кратным корнем вырожденного уравнения // Моделирование и анализ информационных систем. 2016. Т. 23, N 5. С. 515–528.
- 14. Божевольнов Ю.В., Нефедов Н.Н. Движение фронта в параболической задаче реакция диффузия. // Журнал вычислительной математики и математической физики, 2010. Т.50. № 2. С.276-285.
- 15. Нефедов Н.Н. Нестационарные контрастные структуры в системе реакция диффузия. //Математическое моделирование, 1992. Т.4. № 8. С.58-65.

- 16. Альшин А.Б., Корпусов М.О., Юшков Е.В. Бегущая волна как решение нелинейного уравнения в полупроводниках с сильной пространственнйо дисперсией. // ЖВМиМФ, Т.48, №5, с. 808-812 (2008).
- 17. Бахвалов Н.С. Численные методы. 1970.
- 18. С.Лефшец. Геометрическая теория дифференциальных уравнеий. М.: ИЛ, 1961.