Theoretical Basics of Big Data Analytics and Real Time Computation Algorithms Spring 2016

- What is **Big Data**?
 - -Why is it **new and important**?
 - -What **tools** do wee need to deal with it?
- Big collections of data:
 - Retail store inventory and transactions
 - -Cell company records
 - -Weather records
 - Databases: store and manage data

• Digitized data - routinely collected

- Shopping transactions
- Search queries
- Internet traffic
- Readings from sensors

Often tossed away or stored and never used

- Recently: something special
 - New kinds of information
 - Was not anticipated
 - Emerges when BIG
- Valuable **hidden** information
 - not visible
 - -has to be extracted,
 - processed
- **Big Data** is about:
 - New information
 - Specific tools
 - Such definition is
 - is too vague
 - relies on the notion of *information*

Information?

"Logic and Information" Keith Devlin

- What is *Iron*?
 - -Go to Iron age
 - -Ask Ironsmith
 - -Examples: raw, processing, things
- Result: unsatisfactory
 - -No frame of reference
 - -Need to know: molecular structure...
- Now we are in **Information Age**
 - -Know it exists
 - -Have examples
 - Definitions in special cases
- Entering Big Data (sub) Age

Examples of Big Data "BIG DATA: A Revolution That Will Transform How We Live, Work, and Think"

Viktor Mayer-Schönberger and Kenneth Cukier

• Target - Detecting: a woman is pregnant

- -Two dozen products used as proxies
- -Estimate pregnancy stages, due date
- -Send relevant coupons
- Correlation-based techniques
 - -Predict mechanical failures
 - Things break down gradually
 - -Sensors + correlation analysis:
 - * Whirling motor
 - * Excessive heat

* ...

- Replacing parts: 2-3years * Inefficient
- -Predictive analysis
 - * Monitoring individual parts
- Predictions made automatically
- -Based on:
 - * Great number of cases
 - * Correlation analysis
 - * No complex models
 - Modern cars
- Lots of sensors
 - * Temperature, Vibrations, Voltages...
- -Use *complex* models of prediction
- -Information tossed away no learning
- Imagine: transmitted, collected, and analyzed...

- H1N1 Virus 2009
 - -Only hope: to slow its spread
 - -Need to know: where it is
 - -US Center for Diseases Control (CDC):
 - * Doctors: to inform of new flu cases
 - * Week or two out of date
 - $* \Rightarrow$ Delays blinded health agencies
 - Few weeks before H1B1:
 - * Google: paper in "Nature"
 - * Predict spread if winter flu by looking what people were *searching*
 - *3 Bil. queries a day

- Google "learning" technique
 - -CDC data for 2003-2008
 - -Correlations:

* Search queries (50M most common)

- * Flu spread
- Result:
 - * Combination of 45 search terms
 - * + Math model
 - * = Strong correlation with official
 figures
- –So, in 2009 Google more timely indicator

No need in:

- * mouth swabs
- * contacting doctors...
- Instead: huge amount of data
- * Too Big
- * Too Noisy

• Unexpected data in existing collections:

- Too Big
- Too Noisy

Arranging new studies

Aspirin and orange juice vs Cancer

-Standard way:

- * Specific tests
- * Time
- * Low confidence (small amount of data)

-Big Data way:

- * Digitized med. records
- * Shopping transactions
- * Search queries
- * ... (lots of other data)

Other Big Data challenges

- LHC Large Hadron Collider
 - -150 Mil. sensors
 - -40 Mil. times per second
 - -Only 0.001% saved
 - **-25 PB** in 2012 (1PB=1000TB)
 - If all recorded:
 - *150 Mil. PB/year
 - * = **200** x all other sources in the world
- Modern Aircraft
 - -100,000 sensors
 - -Only 3 GB in an hour flight

Seems not Big, but

- Monitoring in **real time**
- -Combinations of readings
- –In dynamics
- -Need to make very fast **predictions**
- \Rightarrow Big Data challenge
- Digitized Media Streaming
 - Large volumes
 - But: Nothing is hidden
 - \Rightarrow Not considered as Big Data
- Information in Big Data
 - –Hidden
 - -Requires special tools
 - Analogy:
 - Rare mineral
 - -Nuclear fusion energy

Big Data Manipulations: Basic Steps

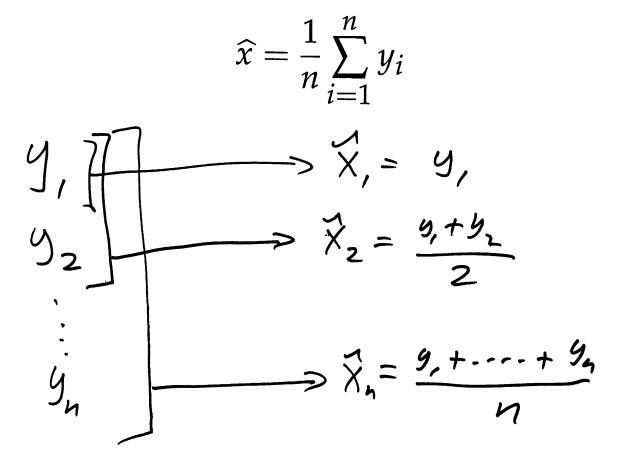
- Extract pieces of information (probably from distributed sources)
- Unify transform to "canonical" form
 - -Compact
 - -Easy to handle
 - Contains sufficient information
- Combine pieces
- Update when new info arrives
- Utilize Decision making

Simplest Example

x - object of interest (unknown value) Observations:

$$y_i = x + \varepsilon_i, \qquad i = 1, \ldots, n$$

 ε_i - i.i.d. random values, $E\varepsilon_i = 0$. A good estimate of *x*:



Updating \widehat{x} *n* : have \widehat{x}_n , get y_{n+1}

$$\widehat{x}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} y_i = \frac{1}{n+1} \left(\sum_{i=1}^n y_i + y_{n+1} \right)$$
$$= \frac{1}{n+1} (n\widehat{x}_n + y_{n+1}) \xrightarrow{>} \eta \, \overrightarrow{x}_{n+1}$$

or

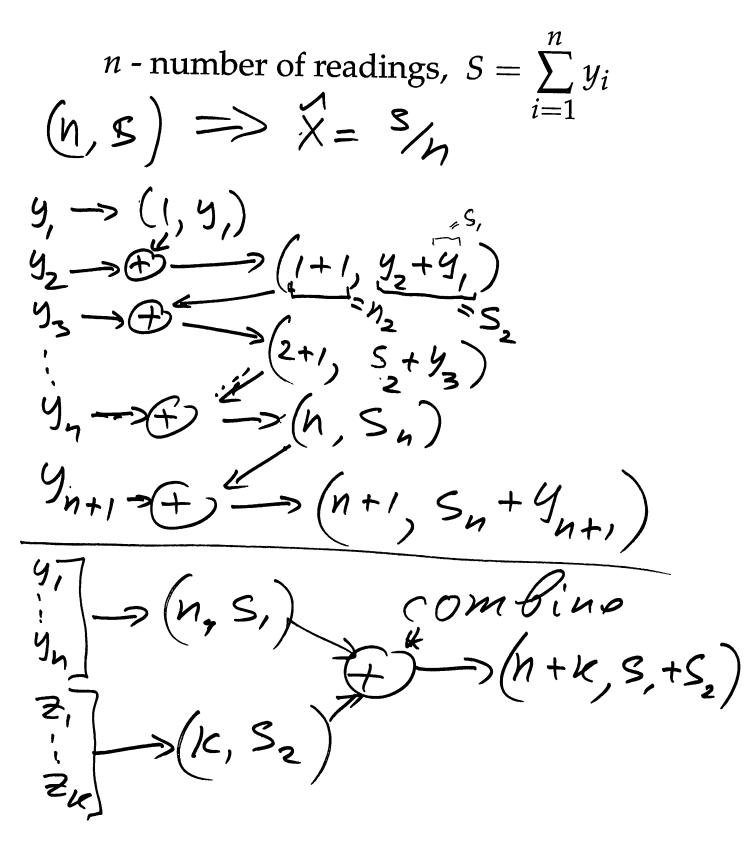
$$\widehat{x}_{n+1} = \widehat{x}_n + \frac{1}{n+1} \left(y_{n+1} - \widehat{x}_n \right)$$

In addition to (\widehat{x}_n) need to keep n. "Explicit" form of information: (n, \widehat{x}_n) .

$$\begin{array}{c} y_{1} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{h} \\ y_{2} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{h} \\ y_{3} \longrightarrow (1+1, \frac{1}{1+1}) \xrightarrow{(1\chi_{1} + q_{2})} \\ y_{3} \longrightarrow (1+1, \frac{1}{1+1}) \xrightarrow{(1\chi_{1} + q_{2})} \\ y_{3} \longrightarrow (1+1) \xrightarrow{(1+1)} \xrightarrow{(\chi_{1} + q_{2})} \\ y_{3} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{(1+1)} \xrightarrow{(\chi_{1} + q_{2})} \\ y_{3} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{(1+1)} \xrightarrow{(\chi_{1} + q_{2})} \\ y_{3} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{(1+1)} \xrightarrow{(\chi_{1} + q_{2})} \\ y_{3} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{(1+1)} \xrightarrow{(\chi_{1} + q_{2})} \\ y_{3} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{(1+1)} \xrightarrow{(\chi_{1} + q_{2})} \\ y_{3} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{(\chi_{1} + q_{2})} \xrightarrow{(\chi_{1} + q_{2})} \\ y_{3} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{(\chi_{1} + q_{2})} \xrightarrow{(\chi_{1} + q_{2})} \\ y_{3} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{(\chi_{1} + q_{2})} \xrightarrow{(\chi_{1} + q_{2})} \xrightarrow{(\chi_{1} + q_{2})} \\ y_{4} \longrightarrow (1, \dot{y}_{1}) \xrightarrow{(\chi_{1} + q_{2})} \xrightarrow{(\chi_{1$$

13

Updating "Canonical" Information (n, S)



Concurrent Combining into level 1 (4, -)(1, 4,)S.(1) 2 5(2) $y_{,} \rightarrow (l, y_{2})$ S_(1) Y3->(1, y3 (2) $y_{4 \rightarrow (l)}$ Y4 ->(1, 9,)ÿ" $h=2^{k}$ le = 092 ìf n = 1000 K=10 K=20 N = Mk=30 n = 1B

Precision of \hat{x}

$$\operatorname{Var}(\widehat{x}) = \frac{\sigma^2}{n} \to 0 \text{ as } n \to \infty.$$

If we collect canonical info (n, S):

$$(n,S) \Rightarrow \widehat{x} = \frac{S}{n}, \quad \operatorname{Var}(\widehat{x}) = \frac{\sigma^2}{n}.$$

(n, S) is sufficient to obtain \hat{x} and its variance, but only when σ^2 is known.

Suppose σ^2 is **not** known

$$\widehat{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^n (y_i - \widehat{x})^2$$

- Unbiased estimate of σ^2 .

$$\sum_{i=1}^{n} (y_i - \hat{x})^2 = \sum_{i=1}^{n} y_i^2 - 2 \sum_{i=1}^{n} y_i \cdot \hat{x} + n \hat{x}^2$$
$$= T - 2S \frac{S}{n} + n \left(\frac{S}{n}\right)^2 = T - \frac{S^2}{n}$$

$$T = \sum_{i=1}^{n} y_i^2$$

New canonical information (n, S, T):

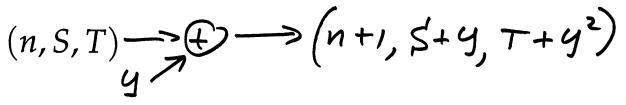
$$n = \sum_{i=1}^{n} y_i^0, \qquad S = \sum_{i=1}^{n} y_i^1, \qquad T = \sum_{i=1}^{n} y_i^2$$
$$\widehat{\sigma^2} = \frac{1}{n-1} \left(T - \frac{S^2}{n} \right)$$

Estimate of the variance of \hat{x} :

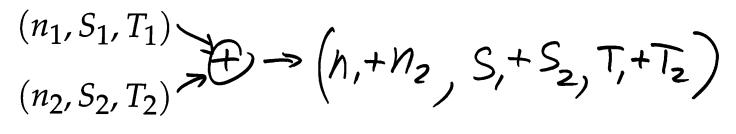
$$V = \widehat{\operatorname{Var}(\widehat{x})} = \frac{\widehat{\sigma^2}}{n} = \frac{1}{n(n-1)} \left(T - \frac{S^2}{n} \right)$$

$$(n, S, T) \Rightarrow \widehat{x} = \frac{S}{n'}, \quad V = \frac{1}{n(n-1)} \left(T - \frac{S^2}{n}\right)$$

Updating can. info:



Combining can. info:



Info in explicit form (n, \hat{x}, V) : Have (n, \hat{x}_n, V_n) , receive y_{n+1} (n, \hat{x}, V) :

$$\widehat{x}_{n+1} = \widehat{x}_n + \frac{y_{n+1}}{n+1} \widehat{x}_n$$

$$\widehat{\sigma^2}_{n+1} = \frac{n-1}{(n-1)} \widehat{\sigma^2}_n + \frac{(y_{n+1}, \widehat{x}_n)^2}{(n+1)} + \frac{(y_{n+1}, \widehat{x}_n)^2}{(n+1)}$$

$$V_{n+1} = \frac{\widehat{\sigma^2}_{n+1}}{n+1} = \frac{n-1}{n+1} V_n + \left(\frac{y_{n+1}}{n+1}\right)^2$$

Updating explicit info:

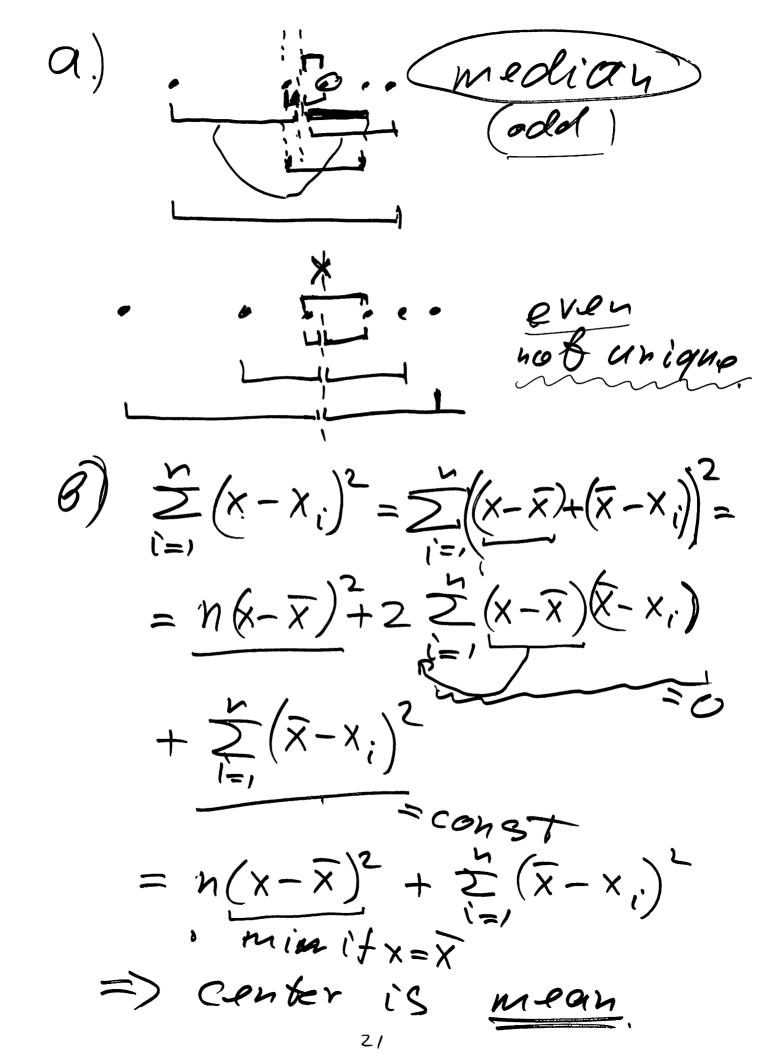
Explicit form for single observation:

$$y \rightarrow (1, y, ?)$$

 $V = \frac{1}{n(n-1)} \sum_{i=1}^{n} (y_i - x)^2$

⇒ Information in explicit form *may not exist*

a set of points. 1x, ... x.Z X XZI Χ, |x - x|a) $\frac{n}{2}|x-x_i| \sim \min_{x}$ $B) \sum_{i=1}^{n} (x - X_i)^2 \sim m_i' m_i'$ c) mardx - x;)~ min x=) n



hin i X_i hax max /x. X. min $X = \frac{1}{2} \left(\min_{i} X_{i} + \max_{i} X_{i} \right)$ $\lim_{i \to \infty} \frac{1}{2} \left(\min_{i} X_{i} + \max_{i} X_{i} \right)$ Call it