Отформатировано: Заголовок 5, По левому краю, интервал После: 0 пт. Поз.табуляции: нет в 0.5 см

Отформатировано: По центру, интервал После: 0 пт

НАУЧНО-ТЕХНИЧЕСКОЕ ПРЕДЛОЖЕНИЕ

Компьютерный стенд реального времени на Speedgoat Физический факультет МГУ

В настоящее время общепризнано, что для применения методов и систем управления нареальных динамических объектах необходимы экспериментальные стенды реального времени. К ним относятся компьютерные стенды, способные работать в режиме HardwareIntheLoopSimulation (HIL). Такой стенд состоит из модели объекта и регулятора, каждый из которых реализован на своём промышленном компьютере. Эти компьютеры образуют обратную связь, сигналы в которой циркулируют в реальном времени. Данные в промышленные компьютеры реального времени загружаются с внешнего компьютера— автоматизированного рабочего места (APM).

— Лидером в практической реализации методов и систем управления является программно-вычислительная среда MATLAB/Simulink компании MathWorks (www.mathworks.com), которая представляет собой мощную интеллектуальную систему, позволяющую проектировать и исследовать системы управления на основе 80-ти пакетов прикладных программ.

— В данном научно техническом предложении предлагается создать стенд реального времени на физфаке на базе компьютеров реального времени, разрабатываемых компанией Speedgoat(Швейцария www.speedgoat.ch) с полной реализацией под MATLAB/Simulink. Промышленные компьютеры Speedgoat позволяют использовать все богатые возможности MATLAB/Simulink в реальном времени.

На стенде можно будет демонстрировать решение задач управления динамическими объектами в реальном времени, например, управление высокотемпературной плазмой в магнитном поле токамаков, управление роботами, газо—и нефтенерерабатывающими процессами, летательным аппаратами и т.н.

— Экспериментальный стенд позволит на физфаке MFУ подняться до мирового уровня реализации систем управления динамическими объектами в реальном времени, а также превзойти этот уровень за счёт новых постановок задач управления, новых методов управления, оригинальности структур систем управления, позволяющих решать продвинутые задачи управления в технике и природе.

— Овладение технологиями реализации систем управления в реальном времени на передовых технических средствах относится к прорывным направлениям в науке и технике на физфаке MFУ.

— В настоящее время достигнуто соглашениес компаниямиSpeedgoatu Softlineno техническим составляющим стенда и их характеристик по представленным ниже упрощённымехемам без АРМ, которые будут определять анпаратурнуюстоимость стенда (рис. 1, 2).

System 2

10us
2us
2us
ADC
(10331-5)
ACC
(10331-5)
2us
2us
ADC
(10331-8)

Отформатировано: интервал После: 0 пт

Отформатировано: Основной шрифт абзаца, Шрифт: (по умолчанию) Calibri, 11 пт, Русский (Россия)

Отформатировано: Шрифт: 12 пт,

без подчеркивания

Рис. 1. Упрощённая схема стенда без синхронизации блоков «объект регулятор»

На рис. 2 приведён более продвинутый вариант схемы стенда с задержками только в 2 мкс в каждом блоке, а также с триггерной синхронизацией блоков.В платах входа выхода будут использоваться FPGA.

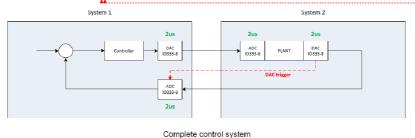


Рис. 2. Упрощённая схема стенда с синхронизацией блоков «объект-регулятор»

— На рис. 3 показана симыолинк схема системы магнитного управления плазмой в токамаке Глобус М (ФТИ им. А.Ф. Иоффе, г. С Петербург). Схема разбита на два блока с задержками для реализации в стенде реального времени, предъявленными компанией Speedgoat. В такой конфигурации схема допускает период дискретизации блока «Регулятор» равным 100 мкс, что вполне доступно для реализации маниной Speedgoat в дискретном времени. Блок «объект» работает с периодом дискретизации в 10 мкс, что вполне реализуется на манине Speedgoat для имитации непрерывного времени.

В целом система управления плазмой на рис. З является гибридной, т.к. она соединяет работу двух блоков в дискретном и непрерывном времени, имитируя аналоговый объект и цифровой регулятор.

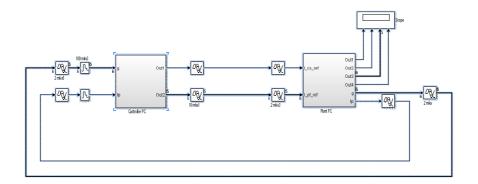


Рис. 3. Симьюлинк схема управления током и формой плазмы в токамаке Глобус-М

Отформатировано: без подчеркивания, Русский (Россия)

Отформатировано: Русский (Россия)

Отформатировано: Шрифт: (по умолчанию) Times New Roman, 12 пт, полужирный, без подчеркивания

Отформатировано: По центру, интервал После: 0 пт

Отформатировано: интервал После: 0 пт

Отформатировано: Шрифт: (по умолчанию) Times New Roman, 12 пт, полужирный, без подчеркивания

Отформатировано: По центру, интервал После: 0 пт

Отформатировано: интервал

После: 0 пт

— Симьюлинк ехема модели объекта управления, включающая в себя модель плазмы, полученную по экспериментальным данным токамака Глобус М, а также два скалярных контура управления положением плазмы и5-ти мерный контур управления токами в обмотках полоидального поля, показана на рис. 4.

Системы управления положением плазмы являются полностью аналоговыми, поскольку их высокое быстродействие с частотой до 3 кГц затрудняет применение цифровых регуляторов. Многомерный контур управления токами в обмотках полоидального поля достаточно медленный и использует давно сделанные пропорциональные аналоговые регуляторы.

Наибольший интерес представляет разработка цифровых регуляторов (рис. 5) для управления током и формой плазмы в токамаке Глобус М. Под управлением формой понимается управление зазорами между сепаратрисой (границей плазмы на диверторной фаре разряда) и первой стенкой токамака.

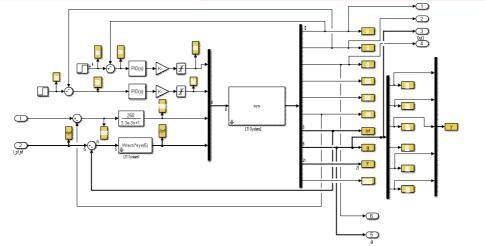


Рис. 4. Симыолинк схема блока стенда «Объект»

Отформатировано: без подчеркивания, Цвет шрифта: Авто

подчеркивания, цвет шрифта. Авто

Отформатировано: без подчеркивания, Цвет шрифта: Авто

Отформатировано: без

подчеркивания, Цвет шрифта: Авто

Отформатировано: без подчеркивания, Цвет шрифта: Авто

от подчеркивания, цвет шрифта. Авто

Отформатировано: без подчеркивания, Цвет шрифта: Авто

Отформатировано: без подчеркивания, Цвет шрифта: Авто

Отформатировано: без

подчеркивания, Цвет шрифта: Авто

Отформатировано: без подчеркивания, Цвет шрифта: Авто

Отформатировано: без

подчеркивания, Цвет шрифта: Авто

Отформатировано: Цвет шрифта:

Отформатировано: без

подчеркивания, Цвет шрифта: Авто

Отформатировано: без

подчеркивания, Цвет шрифта: Авто

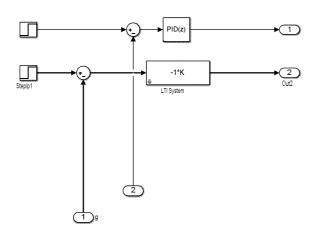
Отформатировано: без

подчеркивания, Цвет шрифта: Авто

Отформатировано: без подчеркивания, Цвет шрифта: Авто

Отформатировано: без подчеркивания, Цвет шрифта: Авто

Отформатировано: Цвет шрифта:

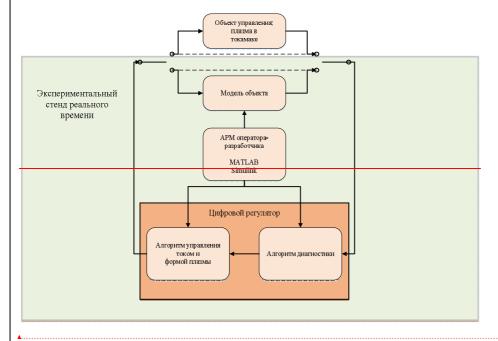

Авто

Отформатировано: Шрифт: (по умолчанию) Times New Roman, 12 пт, полужирный, без подчеркивания

Отформатировано: По центру, интервал После: 0 пт

интервалтносле. Отп

Отформатировано: интервал После: 0 пт



Отформатировано: Шрифт: (по умолчанию) Times New Roman, 12 пт, полужирный, без подчеркивания

Отформатировано: По центру, интервал После: 0 пт

Рис. 5. Симьюлинк схема скалярного регулятора тока плазмы и многомерного регулятора« формы плазмы в дискретном времени, включённых в блок стенда «регулятор», который работает в дискретном времени

Отформатировано: интервал После: 0 пт

• Отформатировано: Английский (США)

Отформатировано: Шрифт: (по умолчанию) Times New Roman, без подчеркивания, Цвет шрифта: Авто

Отформатировано: По центру, интервал После: 0 пт

Отформатировано: Шрифт: не полужирный, без подчеркивания

Отформатировано: Шрифт: не полужирный

<u>Экспериментальный стенд реального времени</u> в задачах управления динамическими объектами

Кафедра физико-математических методов управления

Аннотация

Представляется концепция экспериментального стенда реального времени на промышленных компьютерах Speedgoat, Проводится сравнение компьютерных сред MATLABu LabVIEWдля стенда. Рассматриваются задачи управления динамическими объектами со стендом. Предлагается организация сети стендов, а также внедрение стенда в учебный процесс физфака МГУ,

Отформатировано: интервал После: 0 пт

Отформатировано: без подчеркивания, Русский (Россия)

Отформатировано: Шрифт: полужирный